Chào mừng bạn đến với Gmod.apk hôm nay chúng tôi sẽ giới thiệu bài viết Bài tập bất phương trình logarit có lời giải hi vọng sẽ giúp ích cho bạn
Các dạng bài tập Bất phương trình logarit chọn lọc, có đáp án
Phần Bất phương trình logarit Toán lớp 12 với các dạng bài tập chọn lọc có trong Đề thi THPT Quốc gia và trên 100 bài tập trắc nghiệm chọn lọc, có đáp án. Vào Xem chi tiết để theo dõi các dạng bài Bất phương trình logarit hay nhất tương ứng.
Bài giảng: Cách giải bất phương trình logarit – Cô Nguyễn Phương Anh (Giáo viên VietJack)
- 5 dạng bài tập Bất phương trình logarit trong đề thi Đại học có lời giải Xem chi tiết
- Dạng 1: Bất phương trình logarit cơ bảns Xem chi tiết
- Trắc nghiệm giải bất phương trình logarit cơ bản Xem chi tiết
- Dạng 2: Giải bất phương trình logarit bằng cách đưa về cùng cơ số Xem chi tiết
- Trắc nghiệm giải bất phương trình logarit bằng cách đưa về cùng cơ số Xem chi tiết
- Dạng 3: Giải bất phương trình logarit bằng cách đặt ẩn phụ Xem chi tiết
- Trắc nghiệm giải bất phương trình logarit bằng cách đặt ẩn phụ Xem chi tiết
- Dạng 4: Giải bất phương trình logarit bằng cách mũ hóa và tính đơn điệu Xem chi tiết
- Trắc nghiệm giải bất phương trình logarit bằng cách mũ hóa và tính đơn điệu Xem chi tiết
Bài tập trắc nghiệm
- Bài tập hàm số mũ và logarit nâng cao Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản – phần 1) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản – phần 2) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản – phần 3) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản – phần 4) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (cơ bản – phần 5) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao – phần 1) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao – phần 2) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao – phần 3) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao – phần 4) Xem chi tiết
- 200 bài tập trắc nghiệm Hàm số mũ, lũy thừa, Lôgarit có lời giải (nâng cao – phần 5) Xem chi tiết
Cách giải bất phương trình logarit cơ bản
A. Phương pháp giải & Ví dụ
logax ≤ b Nghiệm 0 < a < 1 x ≥ ab a > 1 0 < x ≤ ab logax ≥ b Nghiệm 0 < a < 1 0 < x ≤ ab a > 1 x ≥ ab
Ví dụ minh họa
Bài 1: Giải bất phương trình sau log2(x2+3x) > 2.
Lời giải:
Bài 2: Giải bất phương trình sau
Lời giải:
Điều kiện : x > -3.
Kết hợp điều kiên ta được x ≥ 13.
Bài 3: Giải bất phương trình sau
Lời giải:
Giải bất phương trình logarit bằng cách đưa về cùng cơ số
A. Phương pháp giải & Ví dụ
logaf(x) ≤ logag(x) 0 < a < 1 logaf(x) ≤ logag(x) ⇔ f(x) ≥ g(x) > 0 a > 1 logaf(x) ≤ logag(x) ⇔ 0 < f(x) ≤ g(x) logaf(x) ≥ logag(x) 0 < a < 1 logaf(x) ≥ logag(x) ⇔ 0 < f(x) ≤ g(x) a > 1 logaf(x) ≥ logag(x) ⇔ f(x) ≥ g(x) > 0
Ví dụ minh họa
Bài 1: Giải bất phương trình sau
Lời giải:
Bất phương trình tương đương
Vậy tập nghiệm của bất phương trình là [2;+∞).
Bài 2: Giải bất phương trình sau
Lời giải:
Bài 3: Giải bất phương trình sau
Lời giải:
Giải bất phương trình logarit bằng cách đặt ẩn phụ
A. Phương pháp giải & Ví dụ
Mục đích chính của phương pháp này là chuyển các bài toán đã cho về bất phương trình đại số quen thuộc, đặc biệt là các bất phương trình bậc hai hoặc hệ bất phương trình.
Ví dụ minh họa
Bài 1: Giải bất phương trình sau log52 x+4log25x-8 < 0.
Lời giải:
Đk: x > 0.
BPT ⇔ log52x + 2log5x – 8 < 0.
Đặt t = log5x. Khi đó bất phương trình trở thành.
t2+2t-8 < 0 ⇔ -4 < t < 2 ⇔ -4 < log5x < 2 ⇔ 5-4 < x < 25 (thỏa điều kiện).
Vậy tập nghiệm của bất phương trình là : (5-4; 25).
Bài 2: Giải bất phương trình sau
Lời giải:
Đặt t=log2x ≠ 0. Khi đó bất phương trình trở thành.
Vậy tập nghiệm của bất phương trình là:
Bài 3: Giải bất phương trình sau
Lời giải:
Đk : x > 0.
Viết lại bất phương trình dưới dạng log3x.log2x-2log3x-log2x-2 < 0.
Khi đó bất phương trình trở thành.
uv-2u-v-2 < 0 ⇔ (u-1)(v-2) < 0.
Vậy tập nghiệm của bất phương trình là: (3;4).
Xem thêm các dạng bài tập Toán lớp 12 có trong đề thi THPT Quốc gia khác:
- Tổng hợp lý thuyết Chương Hàm số lũy thừa, Hàm số mũ, hàm số logarit
- Chủ đề: Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit
- Chủ đề: Phương trình mũ
- Chủ đề: Bất phương trình mũ
- Chủ đề: Phương trình logarit
- Bài tập đồ thị hàm số mũ và logarit
Săn SALE shopee tháng 5:
- Mỹ phẩm SACE LADY giảm tới 200k
- SRM Simple tặng tẩy trang 50k
- Combo Dầu Gội, Dầu Xả TRESEMME 80k